Restrictions on Randomization Example | | Factor A | | | | | | | | | | |----------|-------------------|---|---|---|---|---|--|--|--|--| | | | 1 | | 2 | | | | | | | | | Factor B Factor B | | | | | | | | | | | Factor C | 1 | 2 | 3 | 1 | 2 | 3 | | | | | | 1 | 7 | 1 | 5 | 1 | 3 | 9 | | | | | | 2 | 6 | 3 | 8 | 4 | 2 | 6 | | | | | | 3 | 2 | 9 | 4 | 7 | 8 | | | | | | ### Restrictions on Randomization The Restriction Error #### **Linear Additive Model**: $$Y_{ijk} = \mu + A_i + \delta_{(i)} + B_j + AB_{ij} + C_k + AC_{ik} + BC_{jk} + ABC_{ijk}$$ #### **Restriction Error:** - Follows term where restriction occurs - · Nested within restricted factor - Considered Random with 0 df - Affects EMS prevents direct test on restricted factor - A teaching device purpose is to help you learn to recognize restrictions on randomization and their consequences ### Restrictions on Randomization Expected Mean Squares | Source | а | b | С | EMS | |--------------------|---|---|---|-----| | | F | R | F | | | | i | j | k | | | A _i | 0 | b | С | | | $\delta_{(i)}$ | 1 | b | С | | | B _j | а | 1 | С | | | AB _{ij} | 0 | 1 | С | | | C_k | а | b | 0 | | | C _k | 0 | b | 0 | | | BC _{ik} | а | 1 | 0 | | | ABC _{ijk} | 0 | 1 | 0 | | ## Restrictions on Randomization Expected Mean Squares | Source | а | b | С | EMS | |----------------|---|---|---|--| | | F | R | F | | | | i | j | k | | | A _i | 0 | b | С | σ^2 +c σ^2_{AB} + bc σ^2_{δ} + bc Φ (A) | | $\delta_{(i)}$ | 1 | b | С | $\sigma^2 + c\sigma^2_{AB} + bc\sigma^2_{\delta}$ | | Bj | а | 1 | | σ^2 +ac σ^2_B | | AB_{ij} | 0 | 1 | С | σ^2 + $c\sigma^2_{AB}$ | | C_k | а | b | 0 | σ^2 + a σ^2_{BC} + abΦC | | AC_{ik} | 0 | b | | σ^2 + σ^2_{ABC} + $b\Phi AC$ | | BC_{jk} | а | 1 | 0 | σ^2 + $a\sigma^2_{BC}$ | | ABC_{ijk} | 0 | 1 | 0 | $\sigma^2 + \sigma^2_{ABC}$ | ### Restrictions on Randomization Replicated Field Trial Example Factors: Field (F) 2 Nitrogen (N) 5 Plot 5 # Restrictions on Randomization Replicated Field Trial Example ### Restrictions on Randomization Replicated Field Trial Example Layout: | | Field | | | | | | | | | | | |------------|-------|----|---|----|----|--|----|----|---|----|----| | | | | 1 | | | | | | 2 | | | | Fertilizer | 1 | 2 | 3 | 4 | 5 | | 1 | 2 | 3 | 4 | 5 | | | 1 | 6 | | | | | 26 | 31 | | | | | Plot | 2 | 7 | | | | | 27 | | | | | | | 3 | 8 | | | | | | | | | | | | 4 | 9 | | | 24 | | | | | | 49 | | | 5 | 10 | | 20 | 25 | | | | - | 45 | 50 | | | | | | | | | | | | | | ### Restrictions on Randomization Replicated Field Trial Example $$Y_{ijk} = \mu + F_i + \delta_{(i)} + N_j + FN_{ij} + \epsilon_{(ij)k}$$ | | 2 | 5 | 5 | | |--------------------|---|---|---|---| | | R | F | R | | | Source | i | j | k | EMS | | F _i | 1 | 5 | 5 | $\sigma^2 + 25\sigma^2_{\delta} + 25\sigma^2_{F}$ | | $\delta_{(i)}$ | 1 | 5 | 5 | σ^2 + 25 σ^2_{δ} | | N _i | 2 | 0 | 5 | $\sigma^2 + 5\sigma^2_{FN} + 10\Phi(F)$ | | FN _{ij} | 1 | 0 | 5 | σ^2 + $5\sigma^2_{FN}$ | | ε _{(ij)k} | 1 | 1 | 1 | σ^2 | ### Restrictions on Randomization Replicated Field Trial Example ``` proc mixed; class field nitrogen; model yield = nitrogen; random field field*nitrogen; lsmeans nitrogen / pdiff; run; ``` ### Restrictions on Randomization Greenhouse Example #### **Treatments:** Enzyme Inhibitor 2 Genotype 6 Pots 6 Enzyme inhibitor treatments were placed on separate benches in the greenhouse. There were 6 replicates (pots) of each genotype randomly arranged on each bench. Where is the restriction on randomization? 6 pots of each genotype were randomly placed on each bench. The inhibitor treatment is confounded with bench – it is not possible to say for certain that any effect is caused by the treatment or the bench where it was placed. ## Restrictions on Randomization Greenhouse Example $$Y_{ijk} = \mu + I_i + \delta_{(i)} + G_j + IG_{ij} + \varepsilon_{(ij)k}$$ | | 2 | 6 | 6 | | |--------------------|---|---|---|--| | | F | F | R | | | Source | i | j | k | EMS | | l _i | 0 | 6 | 6 | $\sigma^2 + 36\sigma^2_{\delta} + 36\Phi(I)$ | | $\delta_{(i)}$ | 1 | 6 | 6 | σ^2 + 36 σ^2_{δ} | | G _i | 2 | 0 | 6 | σ^2 + 12 Φ (G) | | IG _{ii} | 0 | 0 | 6 | σ^2 + $6\sigma^2_{IG}$ | | $\epsilon_{(ij)k}$ | 1 | 1 | 1 | σ^2 | $\mathrel{\dot{.}.}$ Because of the restriction there is no test for the inhibitor treatment. ### Restrictions on Randomization Greenhouse Example Using the same resources, how could the design (allocation of treatments to eus) be changed to provide a test for inhibitor (I)? ### Restrictions on Randomization Greenhouse Example Bench 1 Place 3 pots of each inhibitor x genotype treatment combination randomly on each bench. The inhibitor treatment is no longer confounded with bench. There is still a restriction on randomization associated with bench. However, this is not a problem since you are not interested in the effect of bench per se. ## Restrictions on Randomization Greenhouse Example $$Y_{ijkl} = \mu + B_i + \delta_{(i)} + I_j + BI_{ij} + G_k + BG_{ik} + IG_{jk} + BIG_{ijk} + \varepsilon_{(ijk)l}$$ | | 2
R | 2
F | 6
F | 3
R | | |---------------------|--------|--------|--------|--------|--| | Source | i | j | k | 1 | EMS | | B _i | 1 | 2 | 6 | 3 | $\sigma^2 + 36\sigma^2_{\delta} + 36\sigma^2_{BG}$ | | δ _(i) | 1 | 2 | 6 | 3 | $\sigma^2 + 36\sigma^2_{\delta}$ | | l _j | 1 | 0 | 6 | 3 | $\sigma^2 + 18\sigma_{BI}^2 + 18\Phi(I)$ | | Bl _{ij} | 1 | 0 | 6 | 3 | σ^2 + $18\sigma^2_{BI}$ | | G _k | 2 | 2 | 0 | 3 | $\sigma^2 + 6\sigma^2_{BG} + 12\Phi(G)$ | | BG _{ik} | 1 | 2 | 0 | 3 | σ^2 + $6\sigma^2_{BG}$ | | IG _{jk} | 2 | 0 | 0 | 3 | $\sigma^2 + 3\sigma^2_{BIG} + 6\Phi(IG)$ | | BIG _{ijk} | 1 | 0 | 0 | 3 | σ^2 + $3\sigma^2_{BIG}$ | | ε _{(ijk)l} | 1 | 1 | 1 | 1 | σ^2 | # Restrictions on Randomization Growth Chamber Example #### Layout: | - | | Temperature | | | | | | | | | | | | | | | |----------------|---|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | | | | | 1 | | | | | | | 2 | 2 | | | | | Chamber | | • | 1 | | 2 | | | | 3 | | | | 4 | | | | | Soil Treatment | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | Pot | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 | | | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | 72 | 77 | | | 3 | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 | 73 | 78 | | | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 69 | 74 | 79 | | | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ## Restrictions on Randomization Growth Chamber Example #### **Linear additive model:** $$Y_{ijk} = \mu + T_i + C_{(i)j} + \delta_{(ij)} + S_k + TS_{ik} + CS_{(i)jk} + P_{(ijk)l}$$ ## Restrictions on Randomization Growth Chamber Example | Source | df | 2 | 2 | 4 | 5 | Expected Mean Square | |---------------------|----|---|---|---|---|---| | | | F | R | F | R | | | | | i | j | k | ı | | | T _i | 1 | 0 | 2 | 4 | 5 | $\sigma_{P}^{2} + 20\sigma_{\delta}^{2} + 20\sigma_{C}^{2} + 40\Phi[T]$ | | C _{(i)j} | 2 | 1 | 1 | 4 | 5 | $\sigma_{P}^{2} + 20\sigma_{\delta}^{2} + 20\sigma_{C}^{2}$ | | $\delta_{(ij)}$ | 0 | 1 | 1 | 4 | 5 | $\sigma_{P}^2 + 20\sigma_{\delta}^2$ | | S_k | 3 | 2 | 2 | 0 | 5 | $\sigma_{P}^{2} + 5\sigma_{CS}^{2} + 20\Phi[S]$ | | TS _{ik} | 3 | 0 | 2 | 0 | 5 | $\sigma_{P}^{2} + 5\sigma_{CS}^{2} + 10\Phi[TS]$ | | CS _{(i)jk} | 6 | 1 | 1 | 0 | 5 | $\sigma_P^2 + 5\sigma_{CS}^2$ | | $P_{(ijk)l}$ | 64 | 1 | 1 | 1 | 1 | σ_{P}^{2} | # Restrictions on Randomization Growth Chamber Example